.- AD-A
Hllllﬂlllllllllllﬂl llllllllﬂllll“ldlll!

DTIC

ELECTE |
FEB 5 1993

A Larch Specification of c
Copying Garbage Collection

Scott Nettles

December 1992
CMU-CS-92-219

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

93-01940
IMMMM

Abstract

Garbage collection (GC) is an important part of many language implementations. One of the most important
garbage collection techniques is copying GC. This paper consists of an informal but abstract description of
copying collection, a formal specification of copying collection written in the Larch Shared Language and
the Larch/C Interface Language, a simple implementation of a copying collector written in C, an informal
proof that the implementation satisfies the specification, and a discussion of how the specification applies to
other types of copying GC such as generational copying collectors. Limited familiarity with copying GC or
Larch is needed to read the specification.

DISTRISUTION STATIMEINT A

Approved jor pusis elexse
Distnpunon idnumired

g, o S

S et e et it e

This research was sponsored by the Avionics Lab, Wright Research and Development Center, Aeronautical Systems Division
(AFSC), U. 8. Air Force, Wright-Patterson AFB, OH 45433-6543 under Contract F33615-90-C-146S, Arpa Order No. 7597,

The views and conclusions contained in this document are those of the author and should not be interpreted as representing
the official »olicies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

98 2 2 03§

a

3 .
Ny

e

- l’n';
[
e
td

Keywords: formal methods, formal specification, garbage collection, algebraic specification, copying
garbage collection, Larch specification languages, Larch/C specification language

1. Introduction

Automatic storage reclamation, or garbage collection is an important service provided by many language
implementations [11). There are two major techniques used for garbage collection, reference counting and
tracing. Reference counting requires explicitly accounting for the number of references to each data item.
Tracing collectors trace the pointer graph to find the reachable data. The two major variants of the tracing
approach are Mark and Sweep collectors (MSGC) [7], and Copying collectors (CGC) [3]. Mark and Sweep
collectors mark the data reachable from the roots as they trace out the pointer graph. They then “sweep
up” the unmarked data into a free list for reallocation. Copying collection copies the reachable data of the
graph to an unused portion of memory, leaving the garbage behind.

This paper presents a Larch specification and a simple implementation of copying collection as well as
an informal proof that the implementation satisfies the specification. The specification itself is composed of
two parts, one in the Larch Shared Language (LSL) which is used to specify general properties of CGC, and
one in the Larch/C Language (LCL) which uses the LSL traits to specify all of the C routines used in the
implementation. The specification should be readable even by those not familiar with Larch. For a general
introduction to LSL see [6] [5] and to LCL [4]. Both the LSL and LCL specifications have been syntax and
type checked, although no effort has been made at formal verification.

I do not further consider Mark and Sweep collection in detail. However since it is also based on tracing
the pointer graph, those portions of the specification that deal with tracing apply to it as well. Reference
counting is not addressed at all.

The paper begins with a very abstract description of how a tracing collector works, followed by a de-
scription of the standard implementation techniques used for copying collection. Next, I present the LSL
and LCL specifications, followed by the implementation along with informal proofs that the implementation
satisfies the specification. Finally, I discuss the applicability of the specification to several important variants
of CGC, and some related work on formalizing GC.

2. Tracing and Copying Collection

The pointers contained in data form a directed graph, where the data are the nodes and the pointers are the
edges. Any portion of this graph that a program cannot reach by dereferencing pointers is inaccessible to the
program. Such inaccessible data is called garbage and can be reallocated, while any data that is accessible is
called live and must be preserved. Tracing collectors find the live data by computing the transitive closure
of the points-to relation starting from the set of known live data, called roots. The differences among tracing
collectors lie in what algorithm is used to compute the transitive closure, and what is done to the live data
when they are found by the algorithm. Aigorithms for computing transitive closures are graph searching
algorithms, and not surprisingly MSGC uses a depth-first search, and CGC a breadth-first search. (But see
Section 5 for some exceptions to this rule.) Both may use clever representation techniques to avoid using
extra storage beyond that needed for the data while computing the transitive closure.

The following is a general graph searching algorithm. Nodes are divided into two digjoint sets: the seen
nodes, which are known to be in the transitive closure, and the ¥nseen nodes, which may or may not be.
The seen nodes are further divided into two disjoint sets: the visited nodes, which have had the nodes they
refer to added to the seen set, and the unvisited nodes, which have not. The algorithm starts by placing all
the roots in the unvisited set: all other nodes are in the unseen set. It proceeds by selecting some member
of the unvisited set, adding the nodes that it refers to that are unseen to the unvisited set, and then adding
the node to the visited set. When the unvisited set is empty, the algorithm terminates, and all of the live
nodes are in the visited set. Depth-first search of the graph results from managing the unvisited set as a
stack and breadth-first search results from managing it as a queue.

In addition to performing some variant of the algorithm above, tracing collectors perform some additional

actions when a node is added to the seen set. For MSGC this consists of marking the node so that the
reachable nodes can be distinguished from the unreachable ones during the sweep phase. For CGC this
consists of copying the node to a new location in memory. Since other nodes may still refer to the original
node, when a node is copied the original node must be modified so that the fact that it has been copied can
be detected, and where it has been copied to can be found. This is usually done by marking the node as
“forwarded” using a tag and writing a forwarding pointer into the data indicating where it was copied to.

The usefulness of CGC comes in part from the use of a clever encoding of the unseen, unvisited and
visited sets so that no more memory is used by the algorithm than is needed to copy just the live data. The
unseen and seen sets are encoded by placing them in different portions of memory. From-space holds the
unseen set and is where data is copied from; to-space holds the seen set and is where the data is copied to.
Typically CGC visits the data in the graph in a breadth-first manner, and thus the unvisited set must form
a queue. To effect a queue, CGC uses two pointers into to-space, the unscanned pointer and the scanned
pointer. The unscanned pointer points to the first location of to-space that is unused and it forms the tail of
the queue. Data is added to the seen set by copying it to the location referred to by the unscanned pointer.
The scanned pointer points to the location of the first unvisited node, and forms the head of the queue.
Because of the use of unscanned and scanned pointers, CGC terminology generally uses the term unscanned
for unvisited, and scanned for visited.

The standard CGC algorithm is known as the Cheney scan [1)]. It utilizes three basic operations: copying,
forwarding, and scanning. Copying copies a node to the location referred to by the unscanned pointer and
sets the unscanned pointer to refer to the first location after the newly copied data. It also modifies the
original data to record the fact that the data has been copied, as well as the location it was copied to. This
is exactly the act of adding the node to the seen set. Forwarding modifies a pointer to from-space data so
that it refers to the to-space copy of the data. If the node has not yet been copied, it copies it. Scanning
a node forwards each pointer in the node and advances the scanned pointer so that it refers to the next
node in to-space. Since forwarding guarantees that a node has been copied, scanning corresponds directly
to adding the node to the visited set. In addition scanning guarantees that no pointers into from-space are
found in scanned nodes.

Given the operations and data structures above, the actual garbage collection algorithm is very simple.

- When the user program (known as the mutator) runs out of storage, the garbage collector is called. The

roots are defined in an implementation dependent manner, and the unscanned and scanned pointers are
directed at the beginning of to-space. Next, each root is forwarded. This causes all directly reachable nodes
to be copied into the unscanned (seen and unvisited) set and updates the roots so that they point to the new
copies. It does not change the scanned pointer. Now the node pointed to by the scanned pointer is scanned
and the scanned pointer is advanced past the newly scanned node. This is repeated until the scanned pointer
equals the unscanned pointer, which indicates the queue is empty. When this happens the roles of the two
spaces are exchanged (“fipped”) and the mutator can resume. This process examines each live node twice,
once to copy it and once to scan it, and thus the cost of the algorithm is proportional to the number of live
nodes. The live nodes are copied into a contiguous region of memory, which serves to compact memory.

3. The Specification

All of the key concepts and terminology needed to understand the specification have been introduced. The
specification itself is made up of two kinds of components, LSL traits and LCL interfaces. The LSL traits
define sorts and functions at a high level of abstraction and form the vocabulary used in the interfaces.
The LCL interfaces specify pre-conditions that must be satisfied before the routine may be used, and post-
conditions that the routine must guarantee upon termination.

I first present the traits containing the key sorts and some important general functions. Then I present
the LCL interfaces in a top-down fashion along with the supporting LSL traits. The Appendix contains
several of the less important traits which I do not discuss here.

Many of the LSL functions take the form op(arg, arg’), which specifies a relation between a pre-state
and a post-state. In LCL interfaces pre-states are notated with a* and post-states with a °.

3.1. Address trait

Address : trait _
includes Sei(A4, SA) % Sets of Addresses

Figure 1: The Address Trait

Addresses (A) are used to “index” memory. They can only be compared for equality, since no other operations
are defined on them,

3.2. Node trait

Node : trait
includes Address
includes Set(Val, SV') % Sets of Values
includes Set(N, SN) % Sets of Nodes

N tuple of id : UID, addrs : SA, vals : SV
Figure 2: The Node Trait

Nodes (N) are the basic data items of the specification. They consist of a unique identifier, a set of addresses
that are the addresses of the other nodes “pointed to” by the node, and a set of values representing the
non-pointer data in a node. o

3.3. Memory trait

A memory (M) (figure 3) consists of four sets of addresses and two maps. Roots is the set of root addresses.
Uncopied, unscanned, scanned are the sets of addresses that are uncopied, unscanned, and scanned. Collec-
tively unscanned and scanned are the addresses that have been copied. The mem map maps addresses to
nodes, while the forwarded map maps the original address of a copied node to its new address.

isValidMemory captures the notion that a memory is well-formed. It is an invariant of all the LCL

interfaces. Since it is the first function we have seen, and an important one as well, let’s examine it in
detail. The line

i80OneToOne(m.mem) A isOneToOne(m forwanied)
says that only one node can be located at any given address in memory, a.nd that only one node can be
forwarded to any given address. The line

isValidAddrSet(m.roots, m)
says that all the roots are addresses located in memory. The lines

m.uncopied N m.unscanned = {}

m.encopied N m.scanned = {}

m.unscanned N m.scanned = {}
say that the uncopied, unscanned, and scanned sets are all disjoint. The line

m.uncopied N domain(m.forwarded) = {}
says that no uncopied address has been forwarded. The line

m.unscanned U m.scanned = range(m.forwarded)
says that the addresses which have been copied are exactly those which are mapped to by the forwarded
map.

MemoryMain : trait
includes Node
includes FiniteMappingAxz(ANMap, A, N, SA for SDomain)
includes FiniteMappingAuz(AAMap, A, A, SA for SRange, SA for SDomain)
includes TestSet1Arg(isValidAddr,isValidAddrSet, A, SA, M)
M tuple of roots : SA, '
uncopied : SA,
unscanned : SA,
scanned : SA,
mem : ANMap,
forwarded : AAMap
introduces
1sValidMemory : M — Bool
isValidAddr : A, M — Bool
effectiveAddr : A, M — A
asserts
Ym:M,a:An:N
isValidMemory(m) ==
isOneToOne(m.mem) A isOneToOne(m.forwarded)
AisValidAddrSet(m.roots, m)
Am.uncopied N m.unscanned = {}
Am.sncopied N m.scanned = {}
Am.unscanned N m.scanned = {}
Am.uncopied N domain(m.forwarded) = {}
Am.unscanned U m.scanned = range(m.forwarded)
Am.sncopied U m.ynscanned U m.scanned
= domain(m.mem)

isValidAddr(a, m) == if defined(m.forwarded, a)
then defined(m.mem, m.forwarded|a))
else defined(m.mem,a)

effectiveAddr(a, m) == if defined(m.forwarded, a)
then m.forwarded(a]
else a
implies
converts s ValidMemory, isValidAddr, is ValidAddrSet, effectiveAddr

Figure 3: The MemoryMain Trait

Finally m.uncopied U m.unscanned U m.scanned = domain(m.mem)
says that all nodes are referred to by an address in the uncopied, unscanned, or scanned sets.

effectiveAddr translates unforwarded address to forwarded ones, if the node has been copied. The Mem-
oryAuxiliary trait, found in the appendix, defines many simple functions involving memory, mostly serving
to improve the specification’s readability.

3.4. Equiv trait

Egquiv : trait
includes Memory
includes Pa:mueEIementTcst!Am(quuwAddr A A SASA M M,
addrsEquiv for allPass)
introduces
isEquivAddr : A, A, M, M — Bool
isEquivNode : NN, M, M — Bool
memEgquiv : M, M — Bool
asserts
Vm,m':M,a,a":Ann":N
isEquivAddr(a, a’,m, m’') ==
effectiveAddr(a, m') = effectiveAddr(a’, m’)
AisEquivNode(nodeAtAddr(a, m), nodeAtAddr(a’,m’), m, m’)

isEquivNode(n,n’,m, m’) ==
n.id = n'.id
An.vals = n’.vals
AaddrsEquiv(n.addrs, n’'.addrs, m, m’)

memEqgquiv(m, m’) =
uVahndmory(m) A uVaI:ndmory(m’)
AaddrsEquiv(m.roots, m'.roots,m, m
AaddrsEquiv(allNodes(m), aIINodea(m’) m, m’)
implies
converts isEquivAddr, isEquivNode, addrsEquiv, memEquiv

Figure 4: The Equiv Trait

The Egsiv trait captures the notion of equivalence between two addresses, two nodes or two memories. Two
addresses are equivalent if they are equal or one is the forwarded version of the other and the nodes they
point to are equivalent. Two nodes are equivalent if they have the same UID and values and if the addresses
contained in them are equivalent. Two memories are equivalent if they are both well formed and their roots
and all the nodes are equivalent. In addition to the functions directly defined, the function addrsEquiv is
defined by including the trait PairwiseElementTest®Arg with the function isEquivAddr, which is used to test

that all elements of one set have equivalent addresses in another.
Alvenilem For

NTre
i ras E:
Unacinoune ad [j
i J\.;st!i'uatlﬁl—_\'
meveorEDs | SySec A\
mCQUALm) : Distl‘ihtl.ﬂ/
! Availnbuity‘c;‘des
: Avail nnd/or"
5 Dist ! Special

A4

———— e

3.5. Reachable trait

Reachable : trait

inciudes Memory

introduces
reachable : SA,M — SA
rL:SA,SA, M — SA

asserts
Vm:M,a: A, as,808,,a83:5A

reachabdle(as,m) == ri({}, as, m)

ri(as, {}, m) == es
ri{asy, insert(a, asq), m) ==
ri(insert(a, asy),
(as2 U (m.mem[a]).addrs) — insert(a, as,), m)
implies
converts reachable,r;

Figure 5: The Reachable Trait

The Reachable trait is the heart of the specification: all data reachable from the roots is live. Reachability
is the transitive closure of the “points to” relation starting from some given set of addresses. reachable
is defined using the helper function r1. The first two arguments to rf are the visited and unvisited sets
respectively. reachable invokes r! with the initial addresses in the unvisited set. The main action of r! is to
transfer nodes from the unvisited to the visited set. When a node is transferred to the visited set, all the
addresses directly referred to by it are added to the unvisited set minus any addresses already in the visited
set. When the unvisited set is empty, r! is done. No order of addition to either set is implied, and thus r!
does not specify any fixed search order.

3.6. GC

This section begins the presentation of the main body of the specification. The specification is presented
in a top-down fashion. Both the LCL interfaces and LSL traits are discussed. I typically present several
LCL interfaces that share a common trait, followed by the trait itself. This allows the reader to see how a
function is used before seeing the details of the function itself. A functions name should give some insight
into its semantics. .

imports base;
uses GC(memory for M, addr for A);

void gc(void) memory mem; {
requires isInitialMemory(mem");
modifies mem;
ensures ...

isFullGC(men”, mem’)
/\‘!:ﬁ:qawory(-w):

Figure 6: gc Interface

-.'. 4

gc is the priniary interface to the garbage collector. It performs a garbage collection but stops before
the spaces are “flipped”. The pre-condition is that the memory be in its pre-gc state, i.c., essentially that

6

nothing is yet copied. The post-condition is that all the reachable data have been copied and the memory
is in its post-gc state.

imports base;
uses GC(memory for M, addr for A);

void finalizeGC(void) memory mem; {
requires isFinalGCMemory(mem");
nodities mem;
ensures
isInitialNemory(mem’)

/\ mem”.scanned = mem’.uncopied

/\ mem”.roots = mem’.roots

/\ mem".men = mem’.mem;

Figure 7: finalizeGC Interface

finalizeGC “flips” the spaces. The pre-condition is that a GC has just completed, and the post-condition
requires that the implementation ensure that the memoty is in a state where the mutator can resume.

GC : trait
includes Memory
includes Egquiv
includes Reachable
- introduces.

" isFullGC : M, M — Bool
isInstialMemory : M — Bool
isFinalGCMemory : M — Bool

asserts
Vmm: M
isFullGC(m, m') ==
isInitialMemory(m)
AisFinalGCMemory(m’)
AmemEquiv(m, m')
AaddrsEquiv(reachable(m.roots, m), m’.scanned, m, m’)

isInitialMemory(m) ==
isValidMemory(m)
A{} = m.unscanned
A{} = m.scanned
A{} = m.forwarded

isFinalGCMemory(m) ==
isValidMemory(m)
A{} = m.unscanned
A{} = rootsUnforwarded(m)
implies
converts isFullGC, isInitialMemory, isFinalGCMemory

Figure 8: GC Trait

The GC trait captures the essential requirements of a copying collector. Initially the memory must be
entirely uncopied. When a GC completes, all the reachable data must have been copied to the scanned set,

7

the roots updated, the unscanned set empty, and otherwise the memories are still equivalent. All unreachable
nodes are left in the uncopied set.

3.7. Roots

imports base;
uses GC(memory for M, addr for A);

void forwardRoots(void) memory mem; {
requires isInitialMemory(mem©);
modifies mem;
ensures
{} = rootsUnforwarded(mem’)

/\ mem’.roots = mem’.unscanned

/\ {3 = uem’.scanned

/\ memEquiv(men~, mem’);

Figure 9: forwardRoots Interface

forwardRoots is responsible for forwarding the roots. The pre-condition is that the memory has not
yet had anything copied. The post-condition is that all of the roots have been forwarded and are in the
unscanned set but that otherwise memory is unchanged.

imports base;

addr nextUnforvardedRoot(void) memory mem; {
requires isValidMemory(mem~");
ensures if {} = rootsUnforvarded(mem")
then result = alllL .
else Tesult \in rootsUnforwarded(mem");

Figure 10: nextUnforwardedRoot interface

nextUnforwarded Root returns an unforwarded root if one exists, aNil otherwise. aNilis just a user defined
LCL constant for a nil address.

uses Forward(memory for M, addr for A);

void forwardRootiddr(addr *a) memory mem; {
requires
isValidMemory(mem~) /\ (*a)" \in rootsUnforwarded(mem");
modifies mem, *a;
ensures
mem’.roots = (mem”.roots - {(%a)-}) \U {(*a)’}
/\ isForwardStep((sa)~, (*a)’, men~, mem’);

Figure 11: The forwardRootAddr interface

forwardRootAddr forwards a single root. The pre-condition is that the address be an unforwarded root.
The post-condition is that the address is forwarded, and that its new value replaces the old value in the
roots. isForwardStep is defined in the Forward trait found below in figure 17.

3.8. Scanning

imports base;

void scanUnscanned(void) memory mem; <{
requires
{} = rootsUnforvarded(mem")
/\ mem”.roots = mem".unscanned
/\ {3 = nem".scanned
/\ isValidMemory(mem~);
modifies mem;
ensures
mem” .roots = mem’.roots
/\ mem’.unscanned = {}
/\ memEquiv(mem~, mem’)
/\ addrsBquiv(reachable(mem"~.roots, mem~),
mem’.scanned, mem~, mem’);

Figure 12: The scanUnscanned Interface

scan Unscanned completes the transitive closure calculation starting from the forwarded roots. It requires
that the roots all be forwarded and that nothing is scanned. The post-tondition is that scanning is complete,
and that all nodes reachable from the initial roots have been copied and scanned, but that otherwise the
memories are equivalent.

:i.npoi'tl base;

addr nextUnscannedNode(void) memory mem; {
requires isValidMemory(mem“);
ensures if {} = mem~.unscanned
then result = aNIL
else result \in mem".unscanned;

Figure 13: The nextUnscannedNode interface

neztUnscannedNode must return an unscanned node unless there are none left, in which case it must
return aNIL.

scanAddr (figure 14) scans a single address. The pre-condition is that the address be unscanned and that
the nodes reachable from the roots also be reachable from the copied set. The post-condition is- that the
address has been scanned, and that the nodes reachable from the roots are still reachable from the copied
set. New nodes may have been added to the copied set.

impozrts base;
uses Scan(memory for N, addr for A);

void scaniddr(addr a) memory mem; {
requires
isValidNemory(mem~)

/\ addrUnscanned(a, mem~)

/\ addrsEquiv(reachable(mem~.roots, mem-),
reachable(copiedNodes(mem), men~),
nem”, mem“);

modifies mem;
ensures
isScanStep(a, mem~, mem’)

/\ addrsBquiv(reachable(mem".roots, mem~),
reachable(copiedNodes(men’), men’),
HeR”, mem’);

Figure 14: The scanAddr interface

Scan : trait
includes Memory
includes Forward
introduces
isScannedAddr : A,M — Bool
isScanStep : A, M, M — Bool
asserts
VYVm,m':M,a: A
sScannedAddr(a, m) ==
addrScanned(a, m)
AisForwardedAddr(a,a, m,m)
AisForwardedSet((m.mem{a)).addrs,
(m.mem/a]).addrs, m, m)

isScanStep(a, m, m’) ==
memEguiv(m, m')
Am.roots = m’.roots -
AaddrUnscanned(a, m)
AaddrScanned(a, m’)
AisForwardedSet((m.mem{a}).addrs,
(m’.memla]).addrs, m, m')

implies
Vmm' :Ma:A
isScanStep(a, m, m’) = isScannedAddr(a, m’)

converts 1sScannedAddyr, isScanStep

Figure 15: The Scan trait

The Scan trait defines functions used to describe scanning. The function isScannedAddr is true if the
address is in the scanned set, and if L 7th it and its references have been forwarded. The function isScanStep
relates two memories that differ only in that one step of scanning has occurred. This means that the

_forwarded address of the node is added to the scanned set, and that all of its referents are scanned. isScanStep

im. .sScannedAddr.

10

3.9. Forwarding

imports base;
uses Forward(memory for M, addr for Ai);

void forwardiddr(addr *a) memory mem; {
requires isValidMemory(mea~);
modifies mem, *a;
ensures
12 isForwardediddr((+a)", (*a)’, mem~, mem’)
then (*a)" = (#a)’ /\ mem” = mem’
else isForwardStep((*a)~, (%a)’, mem~, mem’);

Figure 16: The forwardAddr interface

forwardAddr forwards an address if it has not already been forwarded. If it has been forwarded, then
nothing changes. The post-condition is that an unforwarded address is forwarded. Allowing forwardAddr
to be applied to already forwarded addresses gives additional flexibility to the specification which will be
discussed later.

Forward : trait
includes Memory
includes Copy
includes PairwiseElementTest2Arg(isForwardedAddr, A, A,SA,SA,M, M,
isForwardedSet for allPass)
introduces
ssForwardedAddr : A, A, M, M — Bool
isForwardStep : A,A,M,M — Bool
asserts
VYVm,m':M,a,ad:A
isForwardedAddr(a, a’,m, m’') ==
isCopiedAddr(a, a’, m, m’)
AeffectiveAddr(a, m’) = o’

isForwardStep(a,a’,m, m') ==
memEquiv(m, m’)
AaddrUnforwarded(a, m)
AaddrForwarded(a’, m’)
A(addrUncopied(a, m) = isCopyStep(a, m, m’))
AisCopiedAddr(a, a’,m, m’)
Am’. forwarded[a] = o’
Am.scanned = m'.scanned

implies
Vm,m':M,a,a :A
isForwardStep(a, a’,m, m’) = isForwardedAddr(a, a’,m, m')

converts isForwardedAddr, isForwardStep
Figure 17: The Forward trait
The Forward trait defines functions used to describe forwarding. isForwardedAddr says that the address

must be copied, and that at least the post version of the address (a’) must refer to the copied version of
the node. The indirectly defined isForwardedSet function says that for every address in one set of addresses,

11

some address in the other set satisfies isForwardedAddr. isForwardStep relates an unforwarded address and
a memory to a forwarded address, and a memory in which only the changes needed to forward the address
have occurred. If the address has not been copied, it is. The new address refers to the copy.

3.10. Copying

imports base;
uses Copy(memory for M, addxr for A);

void copyAddr(addr a) memory mem; {
requires
isValidNemory(mem~)
/\ addrUncopied(a, mem~);
modifies nem;
ensures isCopyStep(a, mem~, mem’);

}

Figure 18: The copyAddr interface

copyAddr copies an uncopied address to a free location. No other changes are made to memory.

Copy : trait
includes Memory
includes Eguiv
introduces
isCopiedAddr : A,A,M,M — Bool
isCopyStep : A, M, M — Bool
asserts
VYm,m':M,a,a :A
isCopiedAddr(a,a’, m, m') ==
isEquivAddr(a, a’,m, m’)
AaddrCopied(effectiveAddr(a’, m’), m’)

isCopyStep(a,m, m’') ==
memEgquiv(m, m')
AaddrUncopied(a, m)
AaddrFree((m’.forwarded(a]), m)
AaddrUnforwarded(m’ . forwarded(a], m)
Am' = [m.roots,
delete(a, m.uncopied),
insert(m’.forwarded([a], m.unscanned),
m.scanned,
rebind(m.mem, a, m’.forwarded[a]),
bind(m.forwarded,a, m’.forwarded[a}))

implies
Ymm':Ma:A
isCopyStep(a, m, m’) = isCopiedAddr(a,a, m, m’)

converts isCopiedAddr, isCopyStep
Figure 19: The Copy trait

The Copy trait defines isCopiedAddr and isCopyStep. isCopiedAddr is true if ¢ and a’ are equivalent,

12

and the node they refer to has been copied in m’. isCopyStep says a is uncopied and the address it is to be
copied to is free and unforwarded. The memory after copying (m’) is related to memory before copying (m)
in the following way: the roots and scanned sets are unchanged, a is removed from the uncopied set, and its
new location added to the uncopied set, the node referred to by a is now found at the new address, and the
forwarded map has a bound to its new location. isCopyStep only constrains the new location of the node to
be free but says nothing about nodes being copied to contiguous addresses.

4. Implementation and Informal Proof of Correctness

The implementation is simple, designed to be short and easy to understand without sacrificing any details
fundamental to the algorithm. All nodes are “cons” cells containing no data fields and two pointer fields,
car and cdr. Space is allocated for the forwarding pointer explicitly rather than using some part of the node
data as probably would be done in a real collector. Data representation issues such as tagging pointers, node
lengths, etc., while important in a real language implementation, are not essential to capturing the essence
of the copying collection algorithm and are thus ignored.

Originally I had not planned on proving the implementation correct, even in the informal manner done
here. However as the specification proceeded, I found it very difficult to convince myself that I had both
included and excluded the right things. Informally verifying the implementation caused me to make signif-
icant modifications to both the LSL and LCL portions of the specification, and gave me greatly increased
confidence that the specifications are essentially correct. At this point only a complete formal verification
would increase my confidence significantly, and even then I would be surprised if it induced more than minor
modifications.

The presentation follows the same top-down order as that of the specification. First, I present the
implementation’s representation memory in the form of the include file gc.h. This is followed by a discussion
of the abstraction function which maps between the representation of memory used in the implementation
and that used in the specification, as well as an invariant which must be preserved by the implementation.
This invariant is needed for some of the proofs. I then present the implementation of each of the interfaces,
along with the informal proof that it satisfies its specification. Unfortunately, this portion of the paper is
difficult to read as it requires frequent back references to the specifications. The complete specification,
found in the Appendix, may be easier to refer to than the specifications in the previous section. The driver
code used to test the garbage collector is omitted.

4.1. The Representation of Memory

The include file gc.h captures the implementation’s representation of memory and plays the same role as the
Address, Node, and Memory traits (figures 1, 2, 3).

#define max¥umRoots 4
#define maxNumlodes 12

typedef int addr;
typedef enum {CONS, FWD} tag t;

typedet struct {
tag_t tag;
addr fwd; .
addr car; tos
addr cdr;

} node;

13

typedet struct {
addr roots([maxNumRoots];
node tolmax¥umNodes];
node from[maxNumNodes];
addr unscanned;
addr scanned;
addr alloc;
addr next_root;

} memory;

extern const addr alNIL;

Addresses are simply indices into arrays. Nodes are structs with fields for a tag, a forwarding address,
a car address, and a cdr address. If the tag is CONS then the node is uncopied and the car and cdr field
hold valid pointers. If the tag is FWD then the node has been copied and the fwd field holds the to-space
address of the copy. The memory struct closely mirrors the Memory trait. The root array holds the roots;
only elements which are not aNil are actually roots. The to and from arrays form to-space and from-space
and together make up the mem and forward maps. Any node in from-space which has a tag FWD is part of
the fwd map, while all other from-space nodes and all to-space nodes are part of the mem map. To-space is
divided into the scanned and unscanned sets by the scanned pointer, while the next free location in to-space
is indicated by the unscanned pointer. Next_root is used during the forwarding of the roots to keep track
of the next root to forward. Alloc indicates the next free location during mutation, and bounds the valid
nodes in from-space.

Addresses are just integers. Thus it is impossible to tell if an address should be used as an index into
the from array or the to array just by examining it. Because of this ambiguity the implementation must be
careful to keep track of which array an address refers to. This gives rise to an important set of invariants
which the implementation must maintain. For the root array the addresses located at indices in the range
[0..nextroot) refer to the to array, while those at indices in the range [next_root..maxroots) refer to the
from array. (The notation {m..n) denotes the set of addresses including m, but excluding n.) In the from
array, nodes with tag CONS contain references into the from array in their car and cdr fields, and nodes with
tag FWD contain references into the to array in their fwd field. In the to array, all nodes at addresses in the
range [0..scanned) are forwarded and contain only references into the to array, while all nodes at addresses
in the range [scanned..uncopied) are unforwarded and contain only references into the from array. These
conditions are invariants and each routine in the implementation may assume they hold at the beginning of
its execution and must guarantee that they hold at the end. The proofs will argue that these conditions are
maintained.

Now consider the correspondence between the implementation and the specification representations of
addresses, nodes and memory in a somewhat more formal light. The ambiguity noted above implies that
implementation addresses do not uniquely correspond to addresses in the specification. The invarients given
above allow us to disambiguate. An implementation node with a tag of CONS corresponds directly to a
node in the specification, with the car and cdr fields making up the address set of the specification node.
The implementation representation does not contain an explicit UID and the set of values is empty. Now
consider how each component of the specification’s memory can be derived from the implementation’s rep-
resentation. M indicates the specification’s representation of memory, I have used the component names of
the implementations memory directly. First consider the components of M which are sets.

M.roots = {a € [0..max_roots) | roots[a] != aNil }

M.uncopied = {a € [0..alloc) | from[a].tag = CONS }

M.unscanned = [scanned..unscanned) ..

M.scanned = [0..scanned) o

M.mem consists of the map that maps all the addresses in M.uncopied to the nodes in the from array

14

at those addresses and all the valid addresses in the to array to the nodes in the to array.

V a € M.uncopied . M.mem[a] = from(a]
V a € [0..unscanned) . M.mem(a] = to[a]

Finally M.forward consists of the map which maps all the addresses in the from array which refer to for-
warded nodes to the addresses in those nodes fwd field:

Y a € {b € [0..alloc) | from[b].tag = FWD} . M.forward[a] = from[a).fwd

4.2. gc

This section begins the top down presentation of the code and the informal proof of correctness. The
implementation itself is very simple and will not be commented on extensively. The arguments that the
invariant isValidMemory is maintained have been omitted as they are obvious but long and tedious.

void gc(void)

{
forwardRoots();
scanUnscanned();

To show that gc satisfies its specification (figure 6) the following must be true: the pre-condition of gc
implies the pre-condition of forwardRoots, the post-condition of forwardRoots implies the pre-condition of
scanUnscanned, and the post-condition of scanUnscanned implies the post-condition of gc.

The first point is trivial, since the pre-condition of gc is the same as the pre-condition of forwardRoots.
The second point follows directly from the fact the first three conjuncts of the post-condition of forwardRoots
are the same as the first three conjuncts of the pre-condition of scanUnscanned and the last conjunct of the
post-condition of forwardRoots (memEquiv(mem~, mem’)) directly implies the last conjunct of the pre-
condition of scanUnscanned (isValidMemory(mem=")). The mem’ in the post-condition of forwardRoots is
the same as mem" in pre-condition of scanUnscanned.

The final point is also straightforward. Let the state of memory before any execution be m, after ex-
ecuting forwardRoots be m’, and after executing scanUnscanned be m”. After expanding isFullGC and
isFinalGCMemory, adding some facts from the post-condition of forwardRoots, and eliminating any con-
juncts which follow directly from the pre-conditions, it must be shown that:

{} = rootsUn forwarded(m’) A m’.roots = m’.unscanned

A {} = m’.scanned A memE quiv(m, m') A m’.roots = m".roots
A m" unscanned = {} A memEquiv(m’, m")
A addrsE quiv(reachable(m’ .roots, m'), m" .scanned, m’, m")
= mem£Equiv(m, m")
A addrsEquiv(reachabdle(m.roots, m), m" .scanned, m, m”)
A isValidMemory(m”) A {} = m”.unscanned
A {} = rootsUn forwarded(m")
From the above one can conclude that all of the following hold
memEquiv(m, m’) A memEquiv(m’, m") = memE quiv(m, m")

memE quiv(m, m’) A m’.roots = m’ .roots
A addrs Equiv(reachabdle(m’.roots, m’'), m” .scanned, m’, m")
=> addrsEquiv(reachable(m.roots, m), m" .scanned, m, m") *

memEquiv(m’, m"”) = {} = m".unscanned

15

{} = rootsUn forwarded(m’) A m’.roots = m" .roots

=> {} = rootsUn forwarded(m”)
and thus that the post-condition of scan Unscanned implies post-condition of gc. Therefore gc satiafies its
specification.

4.3. finaliseGC

void finalizeGC()
{
addr 1i;

for (i = 0; i < mem.scanned; i++) {
mem.from[i] = nem.to[i];

}

mem.alloc = mem.scanned;
nem.next_root = meam.scanned = mem.unscanned = 0;

finalizeGCis used to “flip” the spaces after gc has completed. The pre-condition for finalize GC is satisfied
if it follows gc. For finalizeGC to satisfy its specification (figure 7) the post-condition (islnitialMemory(mem’)
A mem-~.scanned = mem’.uncopied A mem".roots = mem’.roots A mem~.mem = mem’.mem) must hold after
finalizeGC executes.

The for loop copies scanned to uncopied without changing any addresses, satisfying mem".scanned =
mem’.uncopied and mem-.mem = mem’.mem. The roots are not changed, so mem~.roots = mem’.roots
holds. isInstialMemory holds for the the following reasons. Setting scanned and unscanned to 0 means the
scanned and unscanned sets are empty. None of the nodes which were in mem.to and which were copied
into mem.from had a tag FWD, so the forwarded map is empty. In a more typical implementation the copy
probably would not be done, the “flip” might be accomplished purely by changing pointers.

4.4. forwardRoots

void forwardRoots(void)
{
addr r;

while ((xr = nextUnforwardedRoot()) != aNIL) {
forwaxdRootAddr{kmem.roots(r]);
}
}

To show that forwardRoots satisfies its specification (figure 9), it must be shown that assuming the pre-
condition and loop termination then the post-condition is satisfied (partial correctness), and that the loop
terminates. Showing partial correctness of the loop requires a loop condition (LC), and loop invariant (LI),
while showing loop termination requires a metric (M) which decreases monotonically with each iteration of
the loop.

LC == {}! = rootsUn forwarded(mem’)
LI == memE quiv(mem~,mem’) A {} = mem’ .scanned

16

A mem’ .unscanned C mem’.roots
== size(rootsUn forwarded(mem’))[>= 0]

LI is true before the loop executes assuming the pre-condition because
mem” = mem’ => memEquiv(mem”, mem')
isInitial M emory(mem) => {} = mem.scanned
isInitial M emory(mem) = {} = m.unscanned
{} = m.unscanned => mem.unscanned C mem.roots

LI implies that the pre-condition for nextUnforwarded Root holds, and the post-condition of nextUnforward-
edRoot guarantees that either the pre-condition for forwardRootAddr holds, or that the loop terminates.

The post-condition of forwardRootAddr along with the fact that a is an unforwarded root implies that

LI remains true because:
} = mem”.scanned A mem' .roots = (mem”.roots — (*a)”) U (»a)’
A isForwardStep((»a)”, (*a),mem”, mem’)
= memEquiv(mem”, mem’) A {} = mem’.scanned
A mem' .unscanned C mem’ .roots

If the loop terminates then ~LC A LI holds, which satisfies the post-condition of forwardRoots because:
=LC A LI == {} = rootsUn forwarded(mem')

A memE quiv(mem”, mem’)

A {} = mem’.scanned A mem’ .unscanned C mem’.roots

{} = rootsUn forwarded(mem’) A {} = mem’.scanned
=> mem’.roots C mem’.unscanned

mem’.roots C mem’ unscanned A mem’ .unscanned C mem’ .roots
=> mem’.roots = mem’ .unscanned

The loop terminates because each time through the loop forwardRootAddr causes M to decrease. When
it reaches 0 the loop terminates,

4.5. nextUnforwardedRoot

addr nextUnforwardedRoot(veid){

while ((mem.roots[mem.next_root] == aNIL) &2
(mem.next_root < maxNumRoots)) {
Bem.nexXt_Troot++; :

}

if (mem.next_root >= maxNumRoots) return aNIL;

Teturn mem.next_root;

-}

The specification for neztUnforwardedRoot is found in figure 10. The code loops through the roots, until
it either finds an entry which is not aNil which it then returns, or it runs out of roots in which case it returns
aNil. The result is an unforwarded root if one remains and aNil otherwise, thus satisfying the post-condition.

——

17

4.6. forwardRootAddr

void forwardRootAddr(addr sr){
assert(r == gmem.roots[mem.next_root]);
forwardAddr(r);
Rem.next_rootét;

}

The specification for forwerdRootAddr is found in figure 11. The assert makes sure that forwardRootAddr
is in fact called with the next_root so that incrementing next.root correctly reflects the fact that r has been
forwarded. The pre-condition for forwendAddr is satisfied, and furthermore the invariant guarantees that
forwardAddr has been called with an unforwarded address. Executing forwardAddr implies that isForward-
Step holds, and modifies *r, which means the old address is effectively removed from the roots and the new
one added, so the post-condition holds. Incrementing next.root maintains the invariant involving which
roots have been forwarded.

4.7. scanUnscanned

void scanUnscanned(void)
{
addr n;

while ((n = nextUnscannedNode()) != aWIL) {
scandddr(n);
}
}

Showing that scanUnscanned satisfies its specification (figure 12) requires showing both partial correct-
ness and loop termination, assuming that tke pre-condition for scanUnscanned holds. The loop condition
(LC), and loop invariant (LI), and a monotonically increasing metric (M) are:

LC == mem’.unscanned! = {}

L == mem”.roots =
mem’ .roots A memkE quiv(mem”, mem') A addrs Equiv(reachable(mem”, mem”.roots),
reachable(mem/, copied N odes(mem’)), mem”, mem’)

M == size(nodesScanned(mem))[<= size(allN odes(mem))}

Before the loop executes LI holds since
mem’ = mem” =
mem”.roots = mem’ .roots A memEquiv(mem”, mem’)
{} = mem”.scanned => copied N odes(mem’) = unscanned

mem’”.roots = mem”.unscanned

=> addrsEquiv(reachable(mem", mem".roots),

reachable(mem’, copied N odes(mem’)), mem", mem')
LI satisfies the pre-condition for neztUnscannedNode. The post-condition of neztUnscannedNode along with
LI satisfies the pre-condition for scanAddr. The post-condition of scanAddr implies LI since isScanStep
implies that the roots stay constant and that the memories are equivalent and the reachability condition is
an explicit part-of the post-condition of scanAddr.

If the loop terminates then —~LC A LI hold and the following parts of the post-condition for scanUn-
scanned can easily be discharged:

18

mem”.roots = mem’.roots = mem".roots = mem’.roots

mem’ .unscanned! = {} => mem’ .unscanned = {}

memE quiv(mem”, mem’) = memE quiv(mem”, mem’)
I can simplify the remaining conjunct of the post-condition by noting: mem’ .unscanned = {}

A addrs E quiv(reachable(mem”, mem”.roots), ,

reachable(mem’, copied N odes(mem’)), mem”, mem’) =
addrsE quiv(reachable(mem”, mem”.roots),

reachable(mem’, mem’ .scanned), mem”, mem’)
Leaving us to show that

LC A LI => reachable(mem’, mem’ .scanned) = mem’ .scanned

Each element in mem’scanned satisfies isScannedAddr which means all of its pointers satisfy isFor-
wardedAddr and thus are either in mem’.scanned or mem’.unscanned. But mem’.unscanned is empty, so
every address referenced by an address in mem’.scanned must in mem’.scanned as well. This means reach-
able(mem’, mem’.scanned) = memn’.scanned.

The loop terminates, because each execution of scanAddr adds a node to the scanned set, and the number
of nodes which can be added to the scanned set is bounded by the total number of nodes.

4.8. nextUnscannedNode

addr nextUnscannedNode() {
if (mem.scanned >= mem.unscanned) return alNIL;
return mem.scanned;

}

The specification of neztUnscannedNode is found in figure 13. As captured in the abstraction function
unscanned = [scanned..unscanned). Thus if mem.scanned >= mem.unscanned then {} = unscanned, and
aNil should be returned. Otherwise an element of unscanned, mem.scanned, is returned as required by
the post-condition. The specification could be satisfied by returning any unscanned element, but this im-
plementation manages the unscanned set as a queue, with nextUnscannedNode returning the head of the
queue.

4.9. scanAddr

void scanAddr(addr n){
assert(n == mem.scanned);
forvardiddr (kmem.to[n].cax);
forwardAddr (kmem.to[n]) .cdr);
nem.scanned++;

}

The specification of scanAddr is found in figure 14. The assert makes sure that n is the location of the
first element of the unscanned set and thus that incrementing scanned moves the node located at n from
unacanned to scanned. The pre-condition for each forwardAddr is satisfied and the invariant guarantees
that each is called with an unforwarded address, since all nodes at addresses at or above mem.scanned are
guaranteed to contain only unforwarded addresses. The post-condition for forwardAddr implies that both
the car and the cdr are forwarded and that memEquiv holds. Since forwardAddr only modifies the address
passed to it, the roots are unchanged. Incrementing scanned moves n into the scanned set without changing
the rest of memory. Taken together the last three points mean that isScanStep holds. The reachability
condition is satisfied because n is in the copied set and the two forwardAddrs at most add the car and cdr

19

to the copied set 80 the nodes reachable from the copied set are not changed. The invariant is maintained
because the addresses in n are now forwarded, and scanned greater than n, indicating that n is in the scanned
set.

4.10. forwardAddr

void forwardAddr(addr #*a){
it (mem.from(*a].tag != FWD) copyAddr(»a);
*a = pem.from{*a) .fwd;

b

The specification of forwardAddr is found in figure 16. In this implementation forwerdAddr is called only
with unforwarded nodes since in both places forwardAddr is used, the invariant states that the addresses are
unforwarded. The specified interface is more general to allow the specification to be more broadly applicable.
Given that a is unforwarded, forwardAddr must ensure isForwardStep. If the node has not been copied, then
its tag is CONS and the pre-condition for copyAddr holds. This along with the post-condition of copyAddr
implies that the (addrUncopied(a, m) = isCopyStep(a, m, m’)) A isCopiedAddr{a,a’,m,m’) con-
juncts of isForwardStep hold. If the tag is FWD then isCopied Addr(a,a’,m, m’) already holds. The
pointer update makes m’.forwarded(a] = a’ hold. Neither of these things changes the equivalence between
memories. They also do not change the scanned set, s0 isForwardStep holds and forwardAddr satisfies its
specification.

4.11. copyAddr

void copyAddr(addr a) {
mem.to[mem.unscanned] = mem.from[al;
mem.from(a] .tag = FWD;
men.from{al.fud = mem.unscanned;
mem.unscanned++;

}

The specification of copyAddr is found in figure 18. addrFree is satisfied because the node is copied to
mem.unscanned which points to a free location, addrUnforwarded is satisfied because mem.unscanned is
not forwarded. The roots and scanned sets are unchanged. Setting mem.from[a].tag = FWD removes the
node from uncopied. Incrementing unscanned adds the new address to unscanned. Copying the node to
unscanned rebinds it in memory. Finally, mem.from[a].fwd = mem.unscanned adds the new address to the
forwarding map. None of this changes the equivalence of the memories. Choosing unscanned as the location
to copy the node to completes the breadth-first management of the unscanned set, with unscanned acting
as the tail of the queue. Since the node is copied to a location at or above scanned, and it contains only
unforwarded addresses, the invariant holds.

5. Application to Other Garbage Collectors

The implementation in Section 4 shows in detail how the specification applies to a simple two-space copying
collector. It also applies to other copying based collectors including generational copying collectors, incre-
mental copying collectors, and collectors which do not use breadth-first traversal of the node graph. This
- section considers how the specification applies to these variations of CGC. o

5.1. Generational

Generational collectors attempt to minimise the cost of garbage collection by concentrating their efforts on
those portions of memory that are most likely to contain garbage. Typically these are the portions of memory
that have been most recently allocated. Generational collectors divide data into a number of generations
that group the data by how old it is. They then collect younger generations more frequently than the older
ones. [11]

The specification above can be used to describe generational collectors by simply choosing what to
consider as the roots. For simple collectors, the roots are the global data structures, the stack, and the
registers. For a generational collector the roots must also include any pointers from other generations into
the one being collected. Tracking these inter-generational pointers is one of the major design issues in
implementing a generational collector, but lies outside the scope of this specification. Given a set of roots
that includes all the needed inter-generational pointers, the specification can stand without change.

5.2. Non-breadth first

Some research has been done on collectors that do not use a breadth-first traversal of the node graph [12] [9].
The intention is to improve locality by clustering closely connected portions of the node graph. Since data
are accessed by following pointers, a copying strategy that copies subtrees of the graph so that they are
physical close to each other may have this effect.

These collectors can still be described with the specification above. Two techniques can be used to change
the order in which nodes are copied. One technique is to make the implementation’s representation of the
scanned set more complicated so as to allow nodes above the unscanned pointer to be in the scanned set.
Since the specification does not dictate the representation of the scanned or unscanned set it is applicable
to this technique. The other technique is to keep the scanned and unscanned sets representation as is, but
to allow references in nodes in the unscanned set to be forwarded. This eager forwarding can change the
order of copying without otherwise changing the basic algorithm, as long as forwarddddr can ignore already
forwarded references. This is why forwardAddr is specified so that it can ignore already forwarded references.

5.3. Incremental

Incremental collectors work by interleaving collection with mutation. Recently work has been done on a new
incremental copying collector that has some unusual properties with respect to the handling of roots [10].
When an incremental collection starts, it uses the roots as “hints” about what to copying, but does not
forward them since that would violate certain invariants needed by the mutator. As the collection proceeds,
the collector periodically resamples the roots for new parts of the graph to be copied. When the incremental
collection is completed, the roots are forwarded, and the spaces “flipped”.

The modifications to the specification to accommodate this incremental collector would be more extensive.
The roots would have to consist of the union of all the roots sampled during collection. An interface to allow
the copying of a subset of the roots would be needed. The forwardRoots interface would need to change so
that it could forward only a subset of the roots. The overall structure would need to change to allow for
repeatedly copying roots and the scanning the unscanned portions, forwarding roots only at termination. In
addition, many of the proofs of correctness would need to change.

I mention this style of collection because while working on the specification, I realized that the original
incremental collector implementation was flawed in an important way. All the roots were sampled each time
the incremental collector gets control. In fact for correctness, one only needs to guarantee that the transitive
closure of the roots at a flip is copied. This is obvious from the specification of fullGC. One still must sample
some of the roots to get the collector started, but once it is started, one only needs to resample when trying

2

to finish. The sampling of unneeded roots may well lead to data being copied that does not need to be. This
filaw has been corrected.

6. Related work

Considering its importance, there are surprisingly few published attempts at formalizing garbage collection.
Even The Definition of Standard ML [8] a formal semantics of SML contains the statement

There are no rules concerning disposal of inaccessible addresses (“garbage collection”).

The notable exception to this lack is the work by Demmers et. al. [2]. Their work differs from mine
in several important ways. First, they are concerned with characterizing what data is preserved by a
garbage collector (notably conservative and/or generational collectors), rather than capturing the details of
a particular algorithm. In fact, their framework should apply equally to CGC and MSGC, although in their
paper, they apply it primarily to MSGC. In their terminology, my specification models a precise garbage
collector, that is, one which retains exactly those nodes reachable from the roots. They are concerned
with describing imprecise collectors, that is, ones which may retain some nodes which are not reachable
from the roots. They show that such imprecise collectors can be described by a precise collection with an
augmentation to the points-to relation. This is the same sense in which my specification models generational
GC, by augmenting the roots with the needed inter-generational pointers. Another way that their work differs
from mine is in presentation, my formalization is presented in terms of a formal specification language, while
their presentation uses more conventional mathematical notation. Finally they use their formalization to
describe several implementations at a relatively high level of detail, while mine is used to prove the detailed
correctness of a single simple collector.

Acknowledgments

I would like to thank Jim Horning and Jeannette Wing for teaching me Larch and in general for help with
the specification. Jeannette Wing provided invaluable editorial assistence as well. Jim Horning served as
my supervisor during a summer internship at DEC SRC, where this work was begun. I would like to thank
him and DEC SRC for giving me the opportunity to spend the summer at SRC.

22

References

bl

2

(3]

(4]

(8]

(6]

(1

8]

9]

(10]

(11]

(12]

C. 1. Cheney.
A nonrecursive list compaction algorithm.
Communications of the ACM, 13(11):677-78, November 1970.

A. Demers, M. Weiser, B. Hayes, H. Boehm, D. Bobrow, , and S. Shenker.
Combining generational and conservative garbage collection: Framework and implementations.
In 17th Annual ACM Symp. on Principles of Programming Languages, pages 261-269, January 1990.

Robert R. Fenichel and Jerome C. Yochelson.
A LISP garbage collector for virtual-memory computer systems.
Communications of the ACM, 12(11):611-612, November 1969.

John V. Guttag and James J. Horning.
A tutorial on Larch and LCL, a Larch/C interface langunage.
In S. Prehn and W. J. Toetenel, editors, VDM91: Formal Software Development Methods, 10 1991.

J.V. Guttag, J.J. Horning, and Andrés Modet.
Report on the Larch Shared Language: Version 2.3.
Report 58, DEC Systems Research Center, Palo Alto, CA, April 14, 1990.

J.V. Guttag, J.J. Horning, and J.M. Wing.
Larch in five easy pieces.
TR 8, DEC SRC, 7 1985.

John McCarthy.
Recursive functions of symbolic expressions and their computation by machine.
Communications of the ACM, 3(4):184-195, April 1960.

Robin Milner, Mads Tofte, and Robert Harper.
The Definition of Standard ML.
MIT Press, 1989.

David Moon.

Garbage collection in large lisp systems.)

In Conference Record of the 1984 ACM Symposium on Lisp and Functional Programming, pages 235-246, August
1984.

Scott Nettles, James O’Toole, David Pierce, and Nicholas Haines.

Replication-based incremental copying collection.

In International Workshop on Memory Managment. Springer-Verlag, September 1992.
Springer-Verlag Lecture Notes in Computer Science. To appear.

Paul R. Wilson.

Uniprocessor garbage collection techniques.

In International Workshop on Memory Managment. Springer-Verlag, September 1992.
Springer-Verlag Lecture Notes in Computer Science. To appear.

Paul R. Wilson, Micheal S. Lam, and Thomas G. Moher.

Effective static-graph reorganiszation to improve locality in garbage-collected systems.

In Proceedings of the SICPLAN Symposium on Programming Language Design and Implementation, pages 177~
191, June 1991.

23

7. Appendix
7.1. Traits
Address : trait
includes Set(A, SA) % Sets of Addresses
Node : trait
includes Address
includes Set(Val, SV) % Sets of Values
includes Set(N,SN) % Sets of Nodes

N tuple of id : UID,addrs : SA, vals : SV

MemoryMain : trait
includes Node
includes FiniteMappingAuz(ANMap, A, N, SA for SDomain)
includes FiniteMappingAuz(AAMap, A, A, SA for SRange, SA for SDomain)
includes TestSet1Arg(isValidAddr,isValidAddrSet, A, SA, M)
M tuple of roots : SA,
uncopied : SA,
unscanned ;: SA,
scanned : SA,
mem : ANMap,
forwarded : AAMap
introduces
isValidMemory : M — Bool
tsValidAddr : A, M — Bool
effectiveAddr : AL M — A
asserts
Vm:Ma:An:N
isValidMemory(m) ==
" i80neToOne(m.mem) A isOneToOne(m.forwarded)
AisValidAddrSet(m.roots, m)
Am.uncopied N m.unscanned = {}
Am.uncopied N m.scanned = {}
Am.unscanned N m.scanned = {}
Am.uncopied N domain(m.forwarded) = {}
Am.unscanned U m.scanned = range(m.forwarded)
Am.uncopied U m.unscanned U m.scanned
= domasin(m.mem)

isValidAddr(a, m) == if defined(m.forwarded, a)
then defined(m.mem, m.forwarded(a])
else defined(m.mem,a)

effectiveAddr(a, m) == if defined(m.forwarded, a)
then m.forwarded(a)
else a -
implies
converts isValidMemory, isValidAddr, isValidAddrSet, effective Addr

24

Equiv : trait
iucludes Memory
includes PairwiscElementTest®Arg(isEquivAddr, A, A,SA,SA, M, M,
addrsEquiv for allPass)
introduces
isEquivAddr : A,A,M, M — Bool
isEquivNode : N,N,M, M — Bool
memEgquiv : M, M — Bool
asserts
Vm,m':M,a,a : A,n,n': N
isEquivAddr(a, d’,m, m') ==
effectiveAddr(a, m’) = effectiveAddr(a’, m’)
AisEquivNode(nodeAtAddr(a, m), nodeAtAddr(a’, m’), m, m’)

isEquivNode(n, n’,m, m’) ==
n.id = n’.id
An.vals = n’.vals
AaddrsEquiv(n.addrs, n’.addrs, m, m’)

memEquiv(m, m’) ==
is ValidMemory(m) A isValidMemory(m”
AaddrsEquiv(m.roots, m’ .roots, m, m’;
AaddrsEquiv(allNodes(m’, aliNodes(m'), m, m’)
implies
converts isEquivAddr, isEquivNode, addrsEquiv, memEquiv

Reachable : trait

includes Memory

introduces
reachable : SA,M — SA
ry:SA,SA,M — SA

asserts
Vm:M,a: A, as, asy,as2: SA

reachable(as,m) == r({}, as,m)

r1(as,{},m) == as
r1(asy, inseri(a, as3), m) ==
r1(insert(a, as;),
(as3 U (m.mem/(a]).addrs) — insert(a, as,), m)
implies
converts reachable, ry

25

GC : trait
includes Memory
includes Equiv
includes Reachable
introduces
isFllGC : M,M — Bool
isInitialMemory : M — Bool
isFinalGCMemory : M — Bool
asserts
Vm,m' : M
isFullGC(m, m') ==
isInitialMemory(m)
AisFinalGCMemory(m')
AmemEquiv(m, m’)
AaddrsEquiv(reachable(m.roots, m), m'.scanned, m, m’)

isInitialMemory(m) ==
is ValidMemory(m)
A{} = m.unscanned
A{} = m.scanned
A{} = m.forwarded

isFinalGCMemory(m) ==
isValidMemory(m)
A{} = m.unscanned
A{} = rootsUnforwarded(m)
implies
converts isFullGC, isInitialMemory, isFinalGCMemory

Scan : trait
includes Memory
includes Forward
introduces
isScannedAddr : A, M — Bool
isScanStep : A, M, M — Bool
asserts
Vmm':M,a: A
isScannedAddr(a, m) ==
addrScanned(a, m)
AisForwardedAddr(a, @, m, m)
AisForwardedSet((m.memf{a]).addrs,
(m.mem(a]).addrs, m, m)

isScanStep(a,m, m’) ==
memEquiv(m, m’)
Am.roots = m'.rools
AaddrUnscanned(a, m)
AaddrScanned(a, m’)
AisForwardedSet((m.mem(a]).addrs,
(m'.mem(a]).addrs, m, m')

implies
Vmm' :Ma:A

26

isScanStep(a, m, m') = isScannedAddr(a, m’)

converts isScannedAddr, isScanStep

Forwanrd : trait
includes Memory
includes Copy
includes PairwiscElementTest®Arg(isForwardedAddr, A, A, SA,SA,M, M,
isForwardedSet for allPass)
introduces
isForwardedAddr : A, A, M, M — Bool
isForwardStep : A, A,M,M — Bool
asserts
Ym,m':M,a,a': A
isForwardedAddr(a,a’,m, m’) ==
isCopiedAddr(a, a’,m, m’)
AeffectiveAddr(a, m’) = o’

isForwardStep(a, a’,m, m') ==
memEquiv(m, m')
AaddrUnforwarded(a, m)
AaddrForwarded(a’, m')
A(addrUncopied(a,m) = isCopyStep(a, m, m'))
AisCopiedAddr(a, a’,m, m’)
Am’.forwarded[a] = o’
Am.scanned = m’.scanned

implies
VYmm':Maa : A
’ isForwardStep(a, a’, m, m’) = isForwardedAddr(a, a’,m, m’)

converts isForwardedAddr, isForwardStep

Copy : trait
includes Memory
includes Eguiv
introduces
isCopiedAddr : A, A, M,M — Bool
1sCopyStep : A, M, M — Bool
asserts
Vm,m': M,a,a’: A
i8CopiedAddr(a,a’,m, m’) ==
isEquivAddr(a, a’,m, m’)
AaddrCopied(effectiveAddr(a’, m'), m’)

isCopyStep(a,m, m’) ==
memEquiv(m, m')
AaddrUncopied(a, m)
AaddrFree((m' forwarded[a]), m)
AaddrUnforwarded(m’.forwarded[a], m)
Am' = [m.roots,

27

delete(a, m.uncopied),
insert(m’.forwarded[a], m.unscanned),
m.scanned,
rebind(m.mem, a, m’.forwarded(a)),
bind(m.forwarded,a, m’ forwarded[a]))
implies
Ym,m: Ma:A
i8CopyStep(a, m, m’) => isCopiedAddr(a,a, m, m’)

converts isCopiedAddr, isCopyStep

These are some of the less important traits which were not discussed in the text.

Memory : trait
includes MemoryMain
includes MemoryAuziliary

MemoryAuziliary : trait
includes MemoryMain
includes SetOps
includes ElementTest(addrUnforwarded, A, SA, M, addrsUnforwarded for filter)
introduces
nodeAtAddr : A M — N
allNodes : M — SA
copiedNodes : M — SA
addrFree : A, M — Bool
addrCopied : A, M — Bool
addrUncopied : A, M — Bool
addrUnscanned : A, M — Bool
addrScanned : A, M — Bool
addrForwarded : A, M — Bool
addrUnforwarded : A, M — Bool
addrRoot : A, M — Bool
rootsUnforwarded : M — SA
asserts
Vm:Ma:An:N
nodeAtAddr(a, m) == m.mem([effectiveAddr(a, m)]

allNodes(m) == m.uncopied U m.unscanned U m.scanned
copiedNodes(m) == m.unscanned U m.scanned
addrFree(a, m)-== ~defined(m.mem, a)

addrCopied(a, m) == a € copiedNodes(m)

Vdefined(m.forwarded, a)

28

addrUncopied(a, m) == a € m.uncopied
addrUnscanned(a,m) == a € m.unscanned
addrScanned(a,m) == a € m.scanned
addrForwarded(a,m) == a € copiedNodes(m)

addrUnforwarded(a, m) == a € m.gncopsed
Vdefined(m.forwarded, a)

addrRoot(a, m) == a € m.roots

roots Unforwarded(m) == addrsUnforwarded(m.roots, m)
implies
converts nodeAtAddr, allNodes, copiedNodes, addrFree, addrCopied,
addrUncopied, addrUnscanned, addrScanned, addrForwarded,
addrUnforwarded, addrRoot, roots Unforwarded, addrs Unforwarded

FiniteMappingAuz(Map, Domain, Range) : trait
includes FiniteMap(Map, Domain, Range)
includes Set(Domain, SDomain)
includes Set(Range, SRange)
introduces

—[-] : Map, Domain — Range

unbind : Map, Domain — Map

rebind : Map, Domain, Domain — Map

i80neToOne : Map — Bool

bound : Map, Range — Bool

domain : Map — SDomain

range : Map — SRange

asserts

V m: Map,d,d,,ds : Domain,r,r,,rs : Range

ml[d] = apply(m, d)

undind({},d1) == {}
unbdind(bind(m, dy,r),dy) ==
ifdy = ds then m
else bind(unbind(m, d3),dy,r)

rebind({},d1,d3) = {}
rebind(bind(m, d,r),d,,d3) ==
if d = d, then bind(m,d,,r)
else bind(rebind(m,dy,d3),d,r)

isOneToOne({})
i80neToOne(bind(m, d,r)) == ~bosnd(m, r) A isOneToOne(m)

—bound({},r)
bound(bind(m,d,r),r3) == ry = r3 V bosnd(m, r2)

29

domain({}) == {}
domain(bind(m, d,r)) == insert(d, domain(m))

range({}) == {}
range(bind(m, d, r)) == inseri(r, range(m))
implies
VY m: Map,d;: : Domain
—defined(unbdind(m, dy),ds)

converts unbind, rebind, isOneToOne, bound, _[_], domain, range

PairwiseElement Test®Arg(pass, Ey, E3, 51, 52,711, T3) : trait
assumes Set(E;,S)
assumes Set(E3,S3)
introduces
pass : Ey, E3, Ty, T, — Bool
allPass : S1,S2, Ty, Ty — Bool
onePasses : E]_,Sz,Tl,Tz — Bool
removePassing : E,,52,T1, Ty — S3
asserts
V8 :51,8:83,¢e1:E1,69: B3,y Nt : T,
allPau({}, {}1tlvt2)
allPass(insert(ey, 81), 82,11,t3) ==
onePasses(ey, 82,11,12)
AdllPass(s,, removePassing(e,, 82,11,13),11,13)

—onePasses(ey, {},11,t2)
onePasses(ey, insert(ez, 32), ¢y, t2) ==
pass(e1,ea,t,13)
VonePasses(e,, 82,t,12)

nmo”eP“’ing(clv{})tth) == {}
removePassing(ey, inseri(ea, 82),t1,22) ==
if pass(ey, e3,t;,12)
then &3
else insert(ez, removePassing(e), 82,¢,13))
implies .
converts allPass, onePasses, remove Passing

TestSet1Arg(elemOp, 8et0p, E, SE, A) : trait
assumes Set(E, SE)
introduces
setOp : SE, A — Bool
elemOp : E,A — Bool
asserta Ve:E se:SE,a: A
3¢t0p({},)
2¢t0p(insert(e, se), a) == setOp(se,a) A elemOp(e, a)
implies converts setOp

30

These are traits from the LSL handbook®.

Set(E,C) : trait
includes
SetBasics,
Naturel(N),
DerivedOrders(C,C for <, D for >, C for <, D for >)
introduces
delete . E,.C—C
{-}:E—=~C
VN, —-_:C,C=C
size:C—~ N
asserts
Vee,e2:E,88.,32:C
{e} == insert(e, {})
¢ € delete(ez,8) ==¢) £ eaAeL €3
e€E(s1Us)==c€sVeE s
e€E(sNs)==e€s A€
e€(sy—s)==c€EsAegs
u'zc({}) ==
size(inseri(e,s)) == if ¢ & s then size(s) + 1 else size(s)
51 Cay==8-52={}
implies
AbelianMonoid(U for o, {} for unit,C for T),
AC(N,C),
JoinOp(UV),
MemberOp,
PartialOrder(C,C for <, 2 for 2,C for <, D for >),
UnorderedContainer
C generated by {},{-},U
Ve:E s,8,8:C
insert(e, s) # {}
insert(e, insert(e, 8)) == insert(e, s)
81 Csy==38—s8=(}
converts €, &, {_}, delete, size, U,N,—,C,D,C,D

SetBasics(E,C) : trait
introduces
{}=»C
insert : E,C = C
—€—-¢_:E,C — Bool
asserts
C generated by {}, insert
C partitioned by €
Vs:C,eey,e9:E
egs==(cEs)
g {)
ey € insert(ez,8) ==e¢; =€3Ve €3
implies
UnorderedContainer,
MemberOp

1 Copyright @ 1991 1.V. Guttag and Digital Equipment Corporation.

3

Vee,ea:E,8:C

insert(e, o) # {}

insert(e, insert(e, 8)) == insert(e, s)
converts €, ¢

SetOps : trait
assumes
Countable,
SetBasics
includes CollectionOps(false for dups)
introduces
delete : E,C — C
Uy N_:C,C=C
asserts
Vee,ea:E,88,8:C
e1 € delete(eg,8) ==¢; #e2Ae; €8
e€E(sUs)==c€s VeEs
e€(s1Nag)==e€aAe€s,
eE(sy—s)==cE€EnNegs
implies
AbelianMonoid(U for o, {} for unit,C for T),
AC(N,C),
JoinOp(V),
PartialOrder(C, C for <, D for >,C for <, D for >)
C generated by {},{-},U
Ve:E,s,8,38:C .
size(inseri(e, 8)) == if ¢ € s then size(s) else succ(size(s))
s1Coy==8 -8 =}
converts €, ¢, {-}, delete, size,U,N, -, C,,C,D

ElementTest(pass, E,C,T) : trait
assumes Container -
introduces
pass : E, T — Bool
somePass : C,T — Bool
allPass : C,T — Bool
filter .C, T —-C
asserts Vc:C,e:E,t:T
—somePass({},1)
somePass(insert(e,c),t) == pass(e,t) V somePass(c,t)
allPass({},t)
allPass(insert(e,c),t) == pass(e,t) A allPass(c,t)
fiter({},8) == {}
filter(insert(e,c),t) ==
if pass(e,t) then insert(e, filter(c,t)) else filter(c,t)
implies converts somePass, allPass, filler

32

FiniteMap(M,D, R) : trait
introduces
{}: =M
bind . M\\D,R— M
apply: M,D — R
defined : M, D — Bool
asserts
M generated by {}, bind
M partitioned by apply, defined
Ym:M,d,dy,dy: D,r: R
apply(bind(m, da,r),d,) == if d; = d; then r else apply(m,d,)
~defined({},d)
defined(bind(m, d3, r),d1) == (d, = d3) V defined(m, d,)
implies
converts apply, defined
exempting V d : Dapply({},d)

7.2. Interfaces

imports base;
uses GC(memory for M, addr for A);

void gc(void) memory mem; {
requires isInitialMemory(mem~);
modifies men;
ensures
isFullGC(mem", mem’)
/\ isFinalGCMemory(mem’);

imports base;
uses GC(memory for M, addr for Ai);

void finalizeGC(void) memory mem; {
requires isFinalGCMemory(mem~);
mnodifies mem;
ensures
isInitialMemory(mem’)

/\ mem~.scanned = mem’.uncopied

/\ mem".roots = mem’.roots

/\ mem”.mem = mem’.menm;

imports base;
uses GC(memory for M, addr for A);

void forwardRoots(void) memory mem; {

requires isInitialMemory(mem”);
modifies mem;

33

ensures

{3 = rootsUnforvarded(mem’)

/\ mem’.ToOts = mem’.unscanned
/\ {} = nem’.scanned

/\ memEquiv(mea~, mem’);

imports base;

addr nextUnforwardedRoot(void) memory mem; {
requires isValidNemory(mem");
ensures it {} = rootsUnforwarded(mem")
then result = alNIL
else result \in rootsUnforwarded(mem~);

uses Forward(memory for M, addr for A);

void forwardRootiddr(addr *a) memory mem; {
requires
isValidMemory(mem~) /\ (*a)" \in rootsUnforwarded(mem-);
modifies mem, *a;
ensures
mem’.roots = (mem~.roots - {(*a)-}) \U {(*a)’'}
/\ isForwardStep((*a)~, (*a)’, mem~, mem’);

imports base;

void scanUnscanned(void) memory mem; {
requires
{} = rootsUnforwarded(mem")
/\ mem".roots = mem".unscanned
/\ {3 = mem".scanned
/\ isValidMemory(mem");
modifies mem;
ensures
' EeR"~.roots = mem’.roots
/\ mea’.unscanned = {}
/\ memEquiv(mem~, mem’)
/\ addrsEquiv(reachable(mem”.roots, mem"),
mem’.scanned, mem”, mem’);

imports base;

addr nextUnscannedNode(void) memory mem; {
requires isValidMemory(mem");
ensures if {} = mem".unscanned
then result = alNIL
else result \in mem".unscanned;

imports base;
uses Scan(memory for M, addr for A);

void scanAddr(addr a) memory mem; {
requires
isValidMemory(mem~)

/\ addrUnscanned(a, mem”)

/\ addrsEquiv(reachable(mem”.roots, mem"),
reachable(copiedNodes(men”), mem~),
nem", mem");

modifies mem;
ensures
isScanStep(a, mem”, mem’)

/\ addrsEquiv{(reachable(mem~.roots, mem"),
reachable(copiedNodes(men’), mem’),
mem”, mem’);

imports base;
uses Forvard(memory tor M, addr for A);

void forwardAddr(-idr =a) memory mem; {
requires isValidMemory(mem");
modifies mem, *a;
ensures
it isForwardedAddr((+*a)~, (*a)’, mem”, mem’)
then (*a)~ = (*a)’ /\ memn” = mem’
else isForwardStep((*a)~, (#a)’, mem~, mem’);

imports base;
uses Copy(memory for M, addr for A);

void copyAddr(addr a) memory mem; {

requires
isValidMemory(mem~)
/\ addrUncopied(a, mem");
modifies mem;
esnsures isCopyStep(a, mem”, mem’);
}
This is base.lcl.

abstract type addr;

constant addr aNIL;

abstract type memory;

NOSOIY HeRm;

uses Memory(memory for M, addr for A);

uses Reachable(memory for N, addr for A4);

uses Equiv(memory for M, addr for A); -

35

